

Fast and Accurate RF component characterization enabled by FPGA technology

Guillaume Pailloncy Senior Systems Engineer

Agenda

- RF Application Challenges
- What are FPGAs and why are they useful?
- FPGA-based Applications
 - PA Power Leveling
 - Fast Characterization under non-500hm
- Conclusions

RF Application Challenges

Cost of Test

- Rapidly Changing RF Standards (802.11ac, LTE)
- More RF Complexity in Mobile Devices
- Increasing Test Time

Need for Customization

- Integrated DUT Control
- Custom Triggering
- Test Sequencing

Advanced Applications

- Channel Emulation
- Software-Defined Radio
- Power Level Servoing

Device Complexity

FPGA Logic Implementation

Why are FPGAs useful?

- **High Reliability** Designs implemented in hardware
- Low Latency Run algorithms at deterministic rates down to 5 ns
- Reconfigurable Create DUT / application-specific personalities
- High Performance Computational abilities open new possibilities for measurement and data processing speed
- True Parallelism Enables parallel tasks and pipelining, reducing test times

FPGA-based RF Applications

Speeding up PA Power Leveling

Traditional RF PA Servoing Application

Traditional Power Leveling Loop

- 1. Pick a starting VSG power level, based on the estimated gain of the DUT.
- 2. Set the VSG power level.
- 3. Wait for the VSG to settle (amplifier & attenuator stages, switches)
- 4. Wait for the DUT to settle.
- 5. Take a measurement with the VSA.
- 6. If power is in range, exit.
- 7. If it is not, compute the new VSG power level and return to step 2.

Traditional Power Leveling Loop

FPGA-based Power Leveling Loop

Further Speed Up Improvements

- Execute Steps in Parallel
 - Loop step time reduced but more steps required
 - Error in power measurements will reduce while converging
- Use I/Q Digital Gain (DG) control
 - VSG Output Power Stage is set only once (VSG Settling time required only once)
- Use Averaging Schedule
 - Reduce averaging for initial steps (faster measurement)
 - Increase averaging close to convergence (increased accuracy)

FPGA-based Power Leveling Loop

Traditional Approach

FPGA-based Optimized Approach

FPGA-based RF Applications

Fast and Accurate RF Characterization under non-50 Ohm

Source and Load Pull: What's all about?

How to limit power loss through heat while minimizing the signal distortion?

Source and Load Pull

- Find the proper load impedance for optimal output power transfer with minimal distortion
- Find the proper source impedance for optimal input power transfer

Passive Tuning Technologies

- Passive Mechanical Tuning
 - Legacy
 - Inherently support High Power
 - Using step motors (slow process)

- Passive Electronic Tuning
 - Based on PIN diodes (fast)
 - Discrete set of impedances vs frequency

X

Active Tuning Technologies

- Open Loop Active Tuning
 - Very fast
 - Power Amplifier needed
 - Iterative process

- Closed Loop Active Tuning
 - Very fast
 - Synchronized with incident power
 - Subject to oscillation depending on architecture

FPGA-based Digital Closed Loop Active Tuning

- RF signal downconverted to LF
- Continuous control of phase and amplitude
- Bandwidth and power control avoid oscillation

Pseudo-closed loop active tuning

Summary

• RF applications become more complex

- Rapidly changing RF Standards
- More RF Complexity in Mobile Devices
- Increasing Test Time
- RF Instrumentation with user-reconfigurable FPGA brings significant speed and flexibility advantages

Thank you

Visit the NI booth for live demos

